6  The Fourier Transforms

6.1 Exercise 1

Find the DTFT of the signal \(\{..., 0, \underuparrow{1}, 1, 1, 0, 0, ...\}\)

  • a). Write the expression of \(|X(\omega)|\) and \(\angle{X(\omega)}\)
  • b). What is the signal’s spectrum (modulus and phase) at frequency \(f=\frac{1}{2}\)?

Solution

a). Write the expression of \(|X(\omega)|\) and \(\angle{X(\omega)}\)

We apply the definition of the DTFT: \[X(\omega) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}\]

Our signal \(x[n]\) has non-zero values only for \(n=0,1,2\), so we can restrict the sum to these three terms: \[\begin{aligned} X(\omega) &= \sum_{n=0}^{2} x[n] e^{-j\omega n} \\ &= x[0] e^{-j\omega 0} + x[1] e^{-j\omega 1} + x[2] e^{-j\omega 2} \\ &= 1 + e^{-j\omega} + e^{-j2\omega} \end{aligned}\]

Using the Euler formula: \[\begin{aligned} e^{j\omega} &= \cos(\omega) + j \sin(\omega) \\ e^{-j\omega} &= \cos(-\omega) + j \sin(-\omega) = \cos(\omega) - j \sin(\omega) \end{aligned}\] we can write: \[\begin{aligned} X(\omega) &= 1 + e^{-j\omega} + e^{-j2\omega} \\ &= 1 + (\cos(-\omega) + j \sin(-\omega)) + (\cos(-2\omega) + j \sin(-2\omega)) \\ &= 1 + \cos(\omega) - j \sin(\omega) + \cos(2\omega) - j \sin(2\omega) \\ &= 1 + \cos(\omega) + \cos(2\omega) - j (\sin(\omega) + \sin(2\omega)) \end{aligned}\]

The real part is \(1 + \cos(\omega) + \cos(2\omega)\), the imaginary part is \((- \sin(\omega) - \sin(2\omega))\), and therefore the modulus and the phase are: \[\begin{aligned} |X(\omega)| &= \sqrt{(1 + \cos(\omega) + \cos(2\omega))^2 + (\sin(\omega) + \sin(2\omega))^2} \\ \angle{X(\omega)} &= \arctan\left(\frac{- \sin(\omega) - \sin(2\omega)}{1 + \cos(\omega) + \cos(2\omega)}\right) \end{aligned}\]

Just for fun, we can plot these functions here:

Code
import numpy as np
import matplotlib.pyplot as plt
#%matplotlib inline
plt.rcParams['text.usetex'] = True

w = np.linspace(-np.pi, np.pi, 1000)
X = 1 + np.cos(w) + np.cos(2*w) - 1j*(np.sin(w) + np.sin(2*w))

plt.figure(figsize=(6, 2))
plt.plot(w, np.abs(X))
plt.xlabel(r'$\omega$')
plt.ylabel(r'$|X(\omega)|$')
plt.title('Modulus of the DTFT transform of the signal')
plt.tight_layout()

plt.figure(figsize=(6, 2))
plt.plot(w, np.angle(X))
plt.xlabel(r'$\omega$')
plt.ylabel(r'$\angle{X(\omega)}$')
plt.title('Phase of the DTFT transform of the signal')

plt.tight_layout()

b). What is the signal’s spectrum (modulus and phase) at frequency \(f=\frac{1}{2}\)?

We have to evaluate the expressions for \(|X(\omega)|\) and \(\angle{X(\omega)}\) at \(\omega = 2\pi f = 2 \pi \frac{1}{2} = \pi\):

\[\begin{aligned} |X(\pi)| &= |X(\omega) \big|_{\omega=\pi} = \sqrt{(1 + \cos(\pi) + \cos(2\pi))^2 + (\sin(\pi) + \sin(2\pi))^2} = 1 \\ \angle{X(\pi)} &= \angle{X(\omega)} \big|_{\omega=\pi} = \arctan\left(\frac{- \sin(\pi) - \sin(2\pi)}{1 + \cos(\pi) + \cos(2\pi)}\right) = \arctan(0) = 0 \end{aligned}\]

6.2 Exercise 2

Compute the circular convolution of the two signals: \[x_1[n] = [1, 3, 1, 3]\] \[x_2[n] = [2, 2, 5, 5]\]

Solution

We can use the definition of the circular convolution: \[y[n] = x_1[n] \circledast x_2[n] = \sum_{m=0}^{N-1} x_1[m] x_2[(n-m) \mod N]\]

where \(N\) is the length of the signals. In this case, \(N=4\).

We follow the same procedure as when calculating the linear convolution, but the indices (positions) are wrapped by \(N\). When we exceed the length of the signal, we shift the position back to the beginning.

Circular convolution vs linear convolution

The result is a sequence with the same length as the input sequences, \(N=4\): \[y[n] = x_1[n] \circledast x_2[n] = [28, 28, 28, 28]\]

Coincidence

It is only a coincidence that all the values of \(y[n]\) are equal here, \([28, 28, 28, 28]\). In general, the result could be anything.

Generalizations
  • If the two signals have different lengths, we append zeros to the shorter one until both have the same length.

  • We can pick any value if \(N\) longer than the signals. In this case, we extend both signals with zeros until the prescribed length. This is called the circular convolution in N points.

    Homework: compute the circular convolution of these signals in \(N=6\) points.

  • If \(N\) is large enough, the circular convolution becomes the linear convolution. \(N\) must be larger than \(Length_1 + Length_2 - 1\).

    Homework: compute the circular convolution of these signals in \(N=7\) points.

6.3 Exercise 3

Compute the circular convolution in \(N = 7\) points of the same two signals

Solution

We must append zeros to both signals to make their length 7, then do circular convolution as before.

Surprise: we obtain the same result as linear convolution.

6.4 Exercise 4

Consider a periodic signal \(x[n]\) with period \(N=6\) and the DFT coefficients:

\(X_k\) = [21.0000 + 0.0000i , -3.0000 + 5.1962i , -3.0000 + 1.7321i , -3.0000 + 0.0000i , -3.0000 - 1.7321i , -3.0000 - 5.1962i]

Write \(x[n]\) as a sum of sinusoids.

Solution

We know the connection between the DFT coefficients and the cosine components of the signal, from the theory:

  • if \(N\) is odd: \[x[n] = \frac{1}{N} X_0 + \frac{1}{N} \sum_{k=1}^{(N-1)/2} 2 |X_k| \cos\left( 2\pi \frac{k}{N} n + \angle{X_k}\right)\]
  • if \(N\) is even: \[x[n] = \frac{1}{N} X_0 + \frac{1}{N} \sum_{k=1}^{N/2-1} 2 |X_k| \cos\left( 2\pi \frac{k}{N} n + \angle{X_k}\right) + \frac{1}{N} |X_{N/2}| \cos\left( \pi n + \angle{X_{N/2}}\right)\]

In our case we have \(N=6\), so we use the second formula.

We compute the modulus and phase of the DFT coefficients:

  • \(X_0 = 21\): is a real number, positive
    • \(|X_0| = 21\)
    • \(\angle{X_0} = 0\)
  • \(X_1 = -3.0000 + j5.1962\):
    • \(|X_1| = \sqrt{(-3)^2 + 5.1962^2} = ...\)
    • \(\angle{X_1} = \arctan\left(\frac{5.1962}{-3}\right) = ...\)
  • \(X_2 = -3.0000 + j1.7321\):
    • \(|X_2| = \sqrt{(-3)^2 + 1.7321^2} = ...\)
    • \(\angle{X_2} = \arctan\left(\frac{1.7321}{-3}\right) = ...\)
  • \(X_3 = -3\) is a real number, negative
    • \(|X_3| = 3\)
    • \(\angle{X_3} = \pi\)
  • \(X_4 = X_{4-N} = X_{-2} = X_{2}^*\)
    • \(|X_4| = |X_2| = ...\)
    • \(\angle{X_4} = -\angle{X_2} = ...\)
  • \(X_5 = X_{5-N} = X_{-1} = X_{1}^*\)
    • \(|X_5| = |X_1| = ...\)
    • \(\angle{X_5} = -\angle{X_1} = ...\)

Compute these values and replace in the formula.

Complex conjugates

It is not a coincidence that \(X_4 = X_2^*\) and \(X_5 = X_1^*\). If the signal \(x[n]\) has real values, then there is always this complex conjugate property, because the DFT coefficients are even: \[X_k = X_{k-N} = X_{N-k}^*\]

6.5 Exercise 5

Consider a periodic signal \(x[n]\) with period \(N=5\) and the DFT coefficients:

\(X_k\) = [15.0000 + 0.0000i , -2.5000 + 3.4410i , -2.5000 + 0.8123i , -2.5000 - 0.8123i , -2.5000 - 3.4410i]

Write \(x[n]\) as a sum of sinusoids.

Solution

This is similar to the previous exercise, but we have \(N=5\), so we use the formula for odd \(N\).

We have:

  • \(X_0 = 15\): is a real number, positive
    • \(|X_0| = 15\)
    • \(\angle{X_0} = 0\)
  • \(X_1 = -2.5000 + j3.4410\):
    • \(|X_1| = \sqrt{(-2.5)^2 + 3.4410^2} = ...\)
    • \(\angle{X_1} = \arctan\left(\frac{3.4410}{-2.5}\right) = ...\)
  • \(X_2 = -2.5000 + j0.8123\):
    • \(|X_2| = \sqrt{(-2.5)^2 + 0.8123^2} = ...\)
    • \(\angle{X_2} = \arctan\left(\frac{0.8123}{-2.5}\right) = ...\)

Compute these values and replace in the formula.

6.6 Exercise 6

Find the DFT coefficients of the periodic signal with period \(\{1, 1, 0, 0\}\), and write the signal as a sum of sinusoidal components.

Solution

First, we use the definition of the DFT to compute the DFT coefficients.: \[X_k = \sum_{n=0}^{N-1} x[n] e^{-j 2\pi \frac{k}{N} n}, k=0,1,...,N-1\]

Here \(N=4\), so we have to compute 4 sums \(X_k\), each with 4 terms.

\[\begin{aligned} X_0 &= \sum_{n=0}^{3} x[n] e^{-j 2\pi \frac{0}{4} n}\\ &= x[0] + x[1] + x[2] + x[3] \\ &= 2 \end{aligned}\]

\[\begin{aligned} X_1 &= \sum_{n=0}^{3} x[n] e^{-j 2\pi \frac{1}{4} n}\\ &= x[0] + x[1] e^{-j \pi/2} + x[2] e^{-j \pi} + x[3] e^{-j 3\pi/2} \\ &= 1 + 1 \cdot (-j) + 0 \cdot (-1) + 0 \cdot j \\ &= 1 - j \end{aligned}\]

\[\begin{aligned} X_2 &= \sum_{n=0}^{3} x[n] e^{-j 2\pi \frac{2}{4} n}\\ &= x[0] + x[1] e^{-j \pi} + x[2] e^{-j 2\pi} + x[3] e^{-j 3\pi} \\ &= 1 + 1 \cdot (-1) + 0 \cdot 1 + 0 \cdot (-1) \\ &= 0 \end{aligned}\]

\[\begin{aligned} X_3 &= \sum_{n=0}^{3} x[n] e^{-j 2\pi \frac{3}{4} n}\\ &= x[0] + x[1] e^{-j 3\pi/2} + x[2] e^{-j 3\pi} + x[3] e^{-j 9\pi/2}\\ &= 1 + 1 \cdot j + 0 \cdot (-1) + 0 \cdot (-j) \\ &= 1 + j \end{aligned}\]

Note that \(X_3 = X_{3-N} = X_{-1} = X_1^*\), as expected.

Second, we write the signal as a sum of sinusoidal components, using the formula for \(N\) even from the previous exercises: \[x[n] = \frac{1}{N} X_0 + \frac{1}{N} \sum_{k=1}^{N/2-1} 2 |X_k| \cos\left( 2\pi \frac{k}{N} n + \angle{X_k}\right) + \frac{1}{N} |X_{N/2}| \cos\left( \pi n + \angle{X_{N/2}}\right)\]

The modulus and phase of the DFT coefficients are:

  • \(X_0 = 2\): is a real number, positive
    • \(|X_0| = 2\)
    • \(\angle{X_0} = 0\)
  • \(X_1 = 1 - j\):
    • \(|X_1| = \sqrt{1^2 + (-1)^2} = \sqrt{2}\)
    • \(\angle{X_1} = \arctan\left(\frac{-1}{1}\right) = -\frac{\pi}{4}\)
  • \(X_2 = 0\):
    • \(|X_2| = 0\)
    • \(\angle{X_2}\) undefined (doesn’t matter, because the coefficient is 0)
  • \(X_3 = 1 + j\):
    • \(|X_3| = \sqrt{1^2 + 1^2} = \sqrt{2}\)
    • \(\angle{X_3} = \arctan\left(\frac{1}{1}\right) = \frac{\pi}{4}\)

Therefore we can write the signal as: \[\begin{aligned} x[n] &= \frac{1}{4} \cdot 2 + \frac{1}{4} \cdot 2 \sqrt{2} \cos\left( 2\pi \frac{1}{4} n - \frac{\pi}{4}\right)\\ &= \frac{1}{2} + \frac{\sqrt{2}}{2} \cos\left( \frac{\pi}{2} n - \frac{\pi}{4}\right) \end{aligned}\]

The constant DC component is \(\frac{1}{2}\), and there is one sinusoidal component with frequency \(f=\frac{1}{4}\), amplitude \(\frac{\sqrt{2}}{2}\) and initial phase \(-\frac{\pi}{4}\).

6.7 Exercise 7

Write the DFT calculation in Ex.5 as a matrix multiplication.

Solution

This is just a straightforward illustration of the theory.

Note that we can write the calculations for \(X_k\) as the following matrix-vector multiplication: \[\begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ X_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & e^{-j \pi/2} & e^{-j 2\pi/2} & e^{-j 3\pi/2} \\ 1 & e^{-j \pi} & e^{-j 2\pi} & e^{-j 3\pi} \\ 1 & e^{-j 3\pi/2} & e^{-j 6\pi/2} & e^{-j 9\pi/2} \end{bmatrix} \begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \end{bmatrix}\]

or, with the values replaced: \[\begin{aligned} \begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ X_3 \end{bmatrix} &= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -j & -1 & j \\ 1 & -1 & 1 & -1 \\ 1 & j & -1 & -j \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} 2 \\ 1-j \\ 0 \\ 1+j \end{bmatrix} \end{aligned}\]

Welcome to the world of linear algebra and orthogonal transformations!

6.8 Exercise 8

Compute \(x[n]\) in Ex.4 and Ex.5, in two ways:

  • using the definition formula
  • using the matrix form

Solution

We have to compute the signal \(x[n]\) from the DFT coefficients \(X_k\) that are provided in the exercises.

We can achieve this in many ways:

  1. Since we have \(x[n]\) written as a sum of sinusoids, we can just give values to \(n=0, 1, 2, 3, 4, 5\) and compute the values.
  2. We can use the definition formula of the Inverse DFT, IDFT: \[x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{j 2\pi \frac{k}{N} n}\]
  3. We can use the matrix form, which uses the transposed and conjugated matrix of the one used in the DFT calculation:

6.8.0.1 Variant 1: using the sum of sinusoids

We have already written \(x[n]\) as a sum of sinusoids in the previous exercises.

We have to evaluate those expressions for \(n=0, 1, 2, 3, ... , N-1\).

6.8.0.2 Variant 2: using the IDFT formula

The Inverse DFT (IDFT) formula is: \[x[n] = \frac{1}{N} \sum_{k=0}^{N-1} X_k e^{j 2\pi \frac{k}{N} n}, n=0,1,...,N-1\] We have to compute \(N\) sums, each with \(N\) terms.

We will do this only for exercise 4: \[\begin{aligned} x[0] &= \frac{1}{6} \sum(X_0 e^{j 2\pi \frac{0}{6} 0} + X_1 e^{j 2\pi \frac{1}{6} 0} + X_2 e^{j 2\pi \frac{2}{6} 0} + X_3 e^{j 2\pi \frac{3}{6} 0} + X_4 e^{j 2\pi \frac{4}{6} 0} + X_5 e^{j 2\pi \frac{5}{6} 0})\\ &= \frac{1}{6} \sum(X_0 + X_1 + X_2 + X_3 + X_4 + X_5)\\ &= \frac{1}{6} (21 - 3 - 3 - 3 - 3 - 3)\\ &= 1 \end{aligned}\] \[\begin{aligned} x[1] &= \frac{1}{6} \sum(X_0 e^{j 2\pi \frac{0}{6} 1} + X_1 e^{j 2\pi \frac{1}{6} 1} + X_2 e^{j 2\pi \frac{2}{6} 1} + X_3 e^{j 2\pi \frac{3}{6} 1} + X_4 e^{j 2\pi \frac{4}{6} 1} + X_5 e^{j 2\pi \frac{5}{6} 1})\\ &= \frac{1}{6} \sum(X_0 e^{j 0} + X_1 e^{j \pi/3} + X_2 e^{j 2\pi/3} + X_3 e^{j \pi} + X_4 e^{j 4\pi/3} + X_5 e^{j 5\pi/3})\\ &= ... \end{aligned}\] \[\begin{aligned} x[2] &= \frac{1}{6} \sum(X_0 e^{j 2\pi \frac{0}{6} 2} + X_1 e^{j 2\pi \frac{1}{6} 2} + X_2 e^{j 2\pi \frac{2}{6} 2} + X_3 e^{j 2\pi \frac{3}{6} 2} + X_4 e^{j 2\pi \frac{4}{6} 2} + X_5 e^{j 2\pi \frac{5}{6} 2})\\ &= \frac{1}{6} \sum(X_0 e^{j 0} + X_1 e^{j 2\pi/3} + X_2 e^{j 4\pi/3} + X_3 e^{j 2\pi} + X_4 e^{j 8\pi/3} + X_5 e^{j 10\pi/3})\\ &= ... \end{aligned}\] \[\begin{aligned} x[3] &= \frac{1}{6} \sum(X_0 e^{j 2\pi \frac{0}{6} 3} + X_1 e^{j 2\pi \frac{1}{6} 3} + X_2 e^{j 2\pi \frac{2}{6} 3} + X_3 e^{j 2\pi \frac{3}{6} 3} + X_4 e^{j 2\pi \frac{4}{6} 3} + X_5 e^{j 2\pi \frac{5}{6} 3})\\ &= \frac{1}{6} \sum(X_0 e^{j 0} + X_1 e^{j \pi} + X_2 e^{j 2\pi} + X_3 e^{j 3\pi} + X_4 e^{j 4\pi} + X_5 e^{j 5\pi})\\ &= \frac{1}{6} (X_0 - X_1 + X_2 - X_3 + X_4 - X_5)\\ &= 4 \end{aligned}\] \[\begin{aligned} x[4] &= \frac{1}{6} \sum(X_0 e^{j 2\pi \frac{0}{6} 4} + X_1 e^{j 2\pi \frac{1}{6} 4} + X_2 e^{j 2\pi \frac{2}{6} 4} + X_3 e^{j 2\pi \frac{3}{6} 4} + X_4 e^{j 2\pi \frac{4}{6} 4} + X_5 e^{j 2\pi \frac{5}{6} 4})\\ &= \frac{1}{6} \sum(X_0 e^{j 0} + X_1 e^{j 4\pi/3} + X_2 e^{j 8\pi/3} + X_3 e^{j 4\pi} + X_4 e^{j 16\pi/3} + X_5 e^{j 20\pi/3})\\ &= ... \end{aligned}\] \[\begin{aligned} x[5] &= \frac{1}{6} \sum(X_0 e^{j 2\pi \frac{0}{6} 5} + X_1 e^{j 2\pi \frac{1}{6} 5} + X_2 e^{j 2\pi \frac{2}{6} 5} + X_3 e^{j 2\pi \frac{3}{6} 5} + X_4 e^{j 2\pi \frac{4}{6} 5} + X_5 e^{j 2\pi \frac{5}{6} 5})\\ &= \frac{1}{6} \sum(X_0 e^{j 0} + X_1 e^{j 5\pi/3} + X_2 e^{j 10\pi/3} + X_3 e^{j 5\pi} + X_4 e^{j 20\pi/3} + X_5 e^{j 25\pi/3})\\ &= ... \end{aligned}\]

6.8.1 Variant 3: using the matrix form

Note that the preceding calculations can be written as a matrix-vector multiplication:

  • for exercise 4: \[\begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \\ x[4] \\ x[5] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & e^{j \pi/6} & e^{j 2\pi/6} & e^{j 3\pi/6} & e^{j 4\pi/6} & e^{j 5\pi/6} \\ 1 & e^{j 2\pi/6} & e^{j 4\pi/6} & e^{j 6\pi/6} & e^{j 8\pi/6} & e^{j 10\pi/6} \\ 1 & e^{j 3\pi/6} & e^{j 6\pi/6} & e^{j 9\pi/6} & e^{j 12\pi/6} & e^{j 15\pi/6} \\ 1 & e^{j 4\pi/6} & e^{j 8\pi/6} & e^{j 12\pi/6} & e^{j 16\pi/6} & e^{j 20\pi/6} \\ 1 & e^{j 5\pi/6} & e^{j 10\pi/6} & e^{j 15\pi/6} & e^{j 20\pi/6} & e^{j 25\pi/6} \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ X_3 \\ X_4 \\ X_5 \end{bmatrix}\]

The matrix is fixed (depends only on \(N=6\), not on the signal), so the multiplication is straightforward.

We won’t actually compute this, by hand. We could use MATLAB or Python to do it. Note that there is an even faster way to compute this, using the Fast Fourier Transform (FFT) algorithm.

For exercise 5, the matrix is the same, but with \(N=5\), so we have a \(5 \times 5\) matrix. \[\begin{bmatrix} x[0] \\ x[1] \\ x[2] \\ x[3] \\ x[4] \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & e^{j \pi/5} & e^{j 2\pi/5} & e^{j 3\pi/5} & e^{j 4\pi/5} \\ 1 & e^{j 2\pi/5} & e^{j 4\pi/5} & e^{j 6\pi/5} & e^{j 8\pi/5} \\ 1 & e^{j 3\pi/5} & e^{j 6\pi/5} & e^{j 9\pi/5} & e^{j 12\pi/5} \\ 1 & e^{j 4\pi/5} & e^{j 8\pi/5} & e^{j 12\pi/5} & e^{j 16\pi/5} \end{bmatrix} \begin{bmatrix} X_0 \\ X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix}\]

6.9 Exercise 9

A signal \(x[n]\) has a Z transform with one pole \(p_1 = -0.5\) and one zero \(z_1 = 0.9\). It is known that at \(\omega = \pi\), the modulus of the Fourier transform is \(|X(\omega=\pi)| = 1\).

    1. Find the signals’s Z transform \(X(z)\)
    1. Compute the expression of \(|X(\omega)|\) and \(\angle X(\omega)\)
    1. Find the values \(|X(\frac{\pi}{2})|\), \(|X(\frac{-\pi}{2})|\) and \(|X(0)|\)
    1. Sketch \(|X(\omega)|\)

Solution

TODO

6.10 Exercise 10

Design the pole-zero plot of a signal with:

  • low frequency content
  • frequency content around the frequency \(\omega = \frac{\pi}{2}\)

Solution

TODO